Sponsored Links

Senin, 15 Januari 2018

Sponsored Links

DiffGeom34: Gauss, normals and fundamental forms - YouTube
src: i.ytimg.com

In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of R3. It permits the calculation of curvature and metric properties of a surface such as length and area in a manner consistent with the ambient space. The first fundamental form is denoted by the Roman numeral I,

I ( x , y ) = ? x , y ? . {\displaystyle \mathrm {I} (x,y)=\langle x,y\rangle .}

Let X(uv) be a parametric surface. Then the inner product of two tangent vectors is

I ( a X u + b X v , c X u + d X v ) = a c ? X u , X u ? + ( a d + b c ) ? X u , X v ? + b d ? X v , X v ? = E a c + F ( a d + b c ) + G b d , {\displaystyle {\begin{aligned}&{}\quad \mathrm {I} (aX_{u}+bX_{v},cX_{u}+dX_{v})\\&=ac\langle X_{u},X_{u}\rangle +(ad+bc)\langle X_{u},X_{v}\rangle +bd\langle X_{v},X_{v}\rangle \\&=Eac+F(ad+bc)+Gbd,\end{aligned}}}

where E, F, and G are the coefficients of the first fundamental form.

The first fundamental form may be represented as a symmetric matrix.

I ( x , y ) = x T ( E F F G ) y {\displaystyle \mathrm {I} (x,y)=x^{\text{T}}{\begin{pmatrix}E&F\\F&G\end{pmatrix}}y}


Video First fundamental form



Further notation

When the first fundamental form is written with only one argument, it denotes the inner product of that vector with itself.

I ( v ) = ? v , v ? = | v | 2 {\displaystyle \mathrm {I} (v)=\langle v,v\rangle =|v|^{2}}

The first fundamental form is often written in the modern notation of the metric tensor. The coefficients may then be written as g i j {\displaystyle g_{ij}} :

( g i j ) = ( g 11 g 12 g 21 g 22 ) = ( E F F G ) {\displaystyle \left(g_{ij}\right)={\begin{pmatrix}g_{11}&g_{12}\\g_{21}&g_{22}\end{pmatrix}}={\begin{pmatrix}E&F\\F&G\end{pmatrix}}}

The components of this tensor are calculated as the scalar product of tangent vectors X1 and X2:

g i j = X i ? X j {\displaystyle g_{ij}=X_{i}\cdot X_{j}}

for i, j = 1, 2. See example below.


Maps First fundamental form



Calculating lengths and areas

The first fundamental form completely describes the metric properties of a surface. Thus, it enables one to calculate the lengths of curves on the surface and the areas of regions on the surface. The line element ds may be expressed in terms of the coefficients of the first fundamental form as

d s 2 = E d u 2 + 2 F d u d v + G d v 2 {\displaystyle ds^{2}=Edu^{2}+2Fdudv+Gdv^{2}\,} .

The classical area element given by d A = | X u × X v |   d u d v {\displaystyle dA=|X_{u}\times X_{v}|\ du\,dv} can be expressed in terms of the first fundamental form with the assistance of Lagrange's identity,

d A = | X u × X v |   d u d v = ? X u , X u ? ? X v , X v ? - ? X u , X v ? 2   d u d v = E G - F 2 d u d v . {\displaystyle dA=|X_{u}\times X_{v}|\ du\,dv={\sqrt {\langle X_{u},X_{u}\rangle \langle X_{v},X_{v}\rangle -\langle X_{u},X_{v}\rangle ^{2}}}\ du\,dv={\sqrt {EG-F^{2}}}\,du\,dv.}

Example

The unit sphere in R3 may be parametrized as

X ( u , v ) = ( cos u sin v sin u sin v cos v ) ,   ( u , v ) ? [ 0 , 2 ? ) × [ 0 , ? ] . {\displaystyle X(u,v)={\begin{pmatrix}\cos u\sin v\\\sin u\sin v\\\cos v\end{pmatrix}},\ (u,v)\in [0,2\pi )\times [0,\pi ].}

Differentiating X ( u , v ) {\displaystyle X(u,v)} with respect to u and v yields

X u = ( - sin u sin v cos u sin v 0 ) ,   X v = ( cos u cos v sin u cos v - sin v ) . {\displaystyle X_{u}={\begin{pmatrix}-\sin u\sin v\\\cos u\sin v\\0\end{pmatrix}},\ X_{v}={\begin{pmatrix}\cos u\cos v\\\sin u\cos v\\-\sin v\end{pmatrix}}.}

The coefficients of the first fundamental form may be found by taking the dot product of the partial derivatives.

E = X u ? X u = sin 2 v {\displaystyle E=X_{u}\cdot X_{u}=\sin ^{2}v}
F = X u ? X v = 0 {\displaystyle F=X_{u}\cdot X_{v}=0}
G = X v ? X v = 1 {\displaystyle G=X_{v}\cdot X_{v}=1}

so:

( E F F G ) = ( sin 2 v 0 0 1 ) {\displaystyle {\begin{pmatrix}E&F\\F&G\end{pmatrix}}={\begin{pmatrix}\sin ^{2}v&0\\0&1\end{pmatrix}}}


Length of a curve on the sphere

The equator of the sphere is a parametrized curve given by ( u ( t ) , v ( t ) ) = ( t , ? 2 ) {\displaystyle (u(t),v(t))=(t,{\tfrac {\pi }{2}})} with t ranging from 0 to 2 ? {\displaystyle 2\pi } . The line element may be used to calculate the length of this curve.

? 0 2 ? E ( d u d t ) 2 + 2 F d u d t d v d t + G ( d v d t ) 2 d t = ? 0 2 ? | sin v | d t = 2 ? sin ? 2 = 2 ? {\displaystyle \int _{0}^{2\pi }{\sqrt {E\left({\frac {du}{dt}}\right)^{2}+2F{\frac {du}{dt}}{\frac {dv}{dt}}+G\left({\frac {dv}{dt}}\right)^{2}}}\,dt=\int _{0}^{2\pi }|\sin v|\,dt=2\pi \sin {\tfrac {\pi }{2}}=2\pi }

Area of a region on the sphere

The area element may be used to calculate the area of the sphere.

? 0 ? ? 0 2 ? E G - F 2   d u d v = ? 0 ? ? 0 2 ? sin v d u d v = 2 ? [ - cos v ] 0 ? = 4 ? {\displaystyle \int _{0}^{\pi }\int _{0}^{2\pi }{\sqrt {EG-F^{2}}}\ du\,dv=\int _{0}^{\pi }\int _{0}^{2\pi }\sin v\,du\,dv=2\pi \left[-\cos v\right]_{0}^{\pi }=4\pi }

This is Not a Title: The Signifier & The Signified | Fort
src: fort.co


Gaussian curvature

The Gaussian curvature of a surface is given by

K = det I I det I = L N - M 2 E G - F 2 , {\displaystyle K={\frac {\det \mathrm {I\!I} }{\det \mathrm {I} }}={\frac {LN-M^{2}}{EG-F^{2}}},}

where L, M, and N are the coefficients of the second fundamental form.

Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface. An explicit expression for the Gaussian curvature in terms of the first fundamental form is provided by the Brioschi formula.


Our Product Design degrees : Undergraduate study : Engineering and ...
src: www.sussex.ac.uk


See also

  • Metric tensor
  • Second fundamental form

Graph Theory Ch. 1. Fundamental Concept 1 Chapter 1 Fundamental ...
src: images.slideplayer.com


External links

  • First Fundamental Form -- from Wolfram MathWorld
  • PlanetMath: first fundamental form

Source of the article : Wikipedia

Comments
0 Comments